

RESEARCH ARTICLE

DESIGN AND DEVELOPMENT OF SUSTAINABLE AGRICULTURAL PRACTICE WITH SPECIAL REFERENCE TO NADIA DISTRICT, WEST BENGAL

Pramit Saha*

Department of Geography, Vivekananda College, East Udayrajpur, Madhyamgram, Kolkata - 700129, West Bengal, India.

* Corresponding Author.

ABSTRACT:

Sustainable agriculture refers to the use of farming methods and practices that protect or enhance the base of natural resources, other ecosystems that are influenced by agricultural activities, and the financial sustainability of agricultural production. Agriculture is sustainable when it is based on a thorough scientific understanding and is accepted in the marketplace, society, and culture. Sustainable development is defined as the direction of institutional and technological advancement along with the management and maintenance of the natural resource base. By taking these steps, the requirements of present and future generations will be met. In this article; design and development of sustainable agricultural practice with special reference to Nadia District, West Bengal has been discussed.

KEYWORDS: Agriculture, Productivity, Nadia.

INTRODUCTION:

Agriculture depends on its natural environment. The only method to conserve water is to look into the possibilities of using groundwater and surface water resources, which requires rainfall. [1] Drainage is the supply of high-quality water for irrigation in the farming industry. The intensity of irrigation system utilization depends on the available water for various crops grown in different regions. [2-4] The physical atmosphere and agriculture are closely intertwined, and changes in the atmosphere will unavoidably impact how agricultural land is used. [5–6] Although it has long been known that temperature differences indirectly affect how agricultural land is used, slope gradients also limit agriculture and partially explain variations in soil and climate on different slope faces. [7]

RESEARCH METHODOLOGY:

Study Area: Nadia district, West Bengal.

Sampling Plan: Simple random sampling.

Sample Size: 300.

Data Source: Primary data.

Methodology:

I was visited the selected areas in Nadia district, West Bengal for collecting the sample size. The sample belongs to farmers and related to their family members (specifically familiar to the work). The questionnaire sheets were distributed in favour of the respondents after clearing the research objectives. Sufficient time was given in favour of the respondents. After completion of their sheet, the sheet was collected for data analysis and interpretation.

Research Tools: Structured Questionnaire Schedule (5 Point Likert Scale).

Data Analysis and Interpretation: Pie chart.

DATA ANALYSIS, INTERPRETATION, RESULTS AND DISCUSSION:

Туре	Respondents	% of the
		respondents
Upto 30 years old	76	25.34
31-50 years	169	56.33
51 years and more old	55	18.33
Total	300	100

Table 1. Age group of the respondents:

Figure 1. Age group of the respondents

From the above table and figure, it was found that up to 30 years old respondents were 25.34%, 31-50 years respondents were 56.33% & 51 years and more old respondents were 18.33%.

Table 2. Educational Qualifications of the respondents:

Туре	Respondents	% of the respondents
Primary level	88	29.33
Secondary level	113	37.67
Higher secondary/Diploma level	52	17.33
Graduation level	39	13

JRLA, 2025, 2(1): 72-89

Online ISSN: 3048-667X

More than graduation level	8	2.67
Total	300	100

Figure 2. Educational Qualifications of the respondents

From the above table and figure, it was found that educational qualifications of the respondents belong to primary level 29.33%, secondary level 37.67%, higher secondary/diploma level 17.33%, graduation level 13% and more than graduation level 2.67%.

Table 3. Farr	ners with	holdings	within	the size	classes:
---------------	-----------	----------	--------	----------	----------

Туре	Respondents	% of the respondents
Less than 1 hectare	77	25.67
1-2 hectare	106	35.33
2-4 hectare	79	26.33
Above 4 hectares	38	12.67
Total	300	100

Figure 3. Farmers with holdings within the size classes

From the above table and figure, it was found that respondents belong to less than 1 hectare: 25.67%, 1-2 hectare: 35.33%, 2-4 hectare: 26.33% and above 4 hectares: 12.67%.

Table 4.: An advantage of sustainable agricultural practices is reduction in the use of chemical fertilizers

Statement	Options	Respondents	% of respondents	
	Strongly Agree (SA)	33	11	
An advantage of	Agree (A)	65	21.67	
sustainable	Undecided (U)	8	2.67	
agricultural practices	Disagree (D)	102	34	
is reduction in the use	Strongly Disagree	92	30.66	
of chemical fertilizers.	(SD)			
	Total	300	100	

Figure 4. An advantage of sustainable agricultural practices is reduction in the use of chemical fertilizers

From the above table and figure, it was found that the respondents belongs to strongly agree: 11%, agree: 21.67%, undecided: 2.67%, disagree: 34% and strongly disagree: 30.66%.

Table 5.: Farmers in sustainable agriculture lives more in harmony with nature

Statement	Options	Respondents	% of respondents
	Strongly Agree (SA)	44	14.67
Farmers in sustainable	Agree (A)	93	31
agriculture lives more in	Undecided (U)	78	26
harmony with nature	Disagree (D)	64	21.33
	Strongly Disagree (SD)	21	7
	Total	300	100

Figure 5. Farmers in sustainable agriculture lives more in harmony with nature

From the above table and figure, it was found that the respondents belongs to strongly agree: 14.67%, agree: 31%, undecided: 26%, disagree: 21.33% and strongly disagree: 7%.

Table 6	. Economi	c gains	when	employing	sustainable	agricultural	practices	are	not
convinc	ing								

Statement	Options	Respondents	% of respondents
Economic gains	Strongly Agree (SA)	78	26
when employing	Agree (A)	93	31
sustainable	Undecided (U)	6	2
agricultural	Disagree (D)	54	18
practices are not	Strongly Disagree (SD)	69	23
convincing	Total	300	100

Figure 6. Economic gains when employing sustainable agricultural practices are not convincing

From the above table and figure, it was found that the respondents belongs to strongly agree: 26%, agree: 31%, undecided: 2%, disagree: 18% and strongly disagree: 23%.

Table	7.	Net	farm	income	may	decrease	when	a	producer	implements	sustainable
agricul	ltu	ral p	ractice	es							

Statement	Options	Respondents	% of respondents
	Strongly Agree (SA)	38	12.67
Net farm income may	Agree (A)	51	17
decrease when a	Undecided (U)	6	2
producer implements	Disagree (D)	118	39.33
sustainable agricultural	Strongly Disagree (SD)	87	29
practices	Total	300	100

Figure 7. Net farm income may decrease when a producer implements sustainable agricultural practices

From the above table and figure, it was found that the respondents belongs to strongly agree: 12.67%, agree: 17%, undecided: 2%, disagree: 39.33% and strongly disagree: 29%.

 Table 8. Sustainable agricultural systems can improve income on a farm

Statement	Options	Respondents	% of respondents	
	Strongly Agree (SA)	96	32	
Sustainable agricultural	Agree (A)	121	40.34	
systems can improve	Undecided (U)	3	1	
income on a farm	Disagree (D)	58	19.33	
	Strongly Disagree (SD)	22	7.33	
	Total	300	100	

Figure 8. Sustainable agricultural systems can improve income on a farm

From the above table and figure, it was found that the respondents belongs to strongly agree: 32%, agree: 40.34%, undecided: 1%, disagree: 19.33% and strongly disagree: 7.33%.

Statement	Options	Respondents	% of respondents
	Strongly Agree (SA)	85	28.33
Sustainable agricultural	Agree (A)	176	58.67
practices would work	Undecided (U)	4	1.33
well on any farm	Disagree (D)	21	7
	Strongly Disagree (SD)	14	4.67
	Total	300	100

Table 9. Sustainable agricultural practices would work well on any farm

Figure 9. Sustainable agricultural practices would work well on any farm

From the above table and figure, it was found that the respondents belongs to strongly agree: 28.33%, agree: 58.67%, undecided: 1.33%, disagree: 7% and strongly disagree: 4.67%.

Table 10. Susta	ainable agricultural praction	ces may require additiona	l management beyond
conventional p	ractices		

Statement	Options	Respondents	% of respondents
	Strongly Agree (SA)	96	32
Sustainable agricultural	Agree (A)	101	33.67
practices may require	Undecided (U)	3	1
additional management	Disagree (D)	64	21.33
beyond conventional	Strongly Disagree	36	12
practices	(SD)		
	Total	300	100

Figure 10. Sustainable agricultural practices may require additional management beyond conventional practices

From the above table and figure, it was found that the respondents belongs to strongly agree: 32%, agree: 33.67%, undecided: 1%, disagree: 21.33% and strongly disagree: 12%.

Table 11. The adoption of sustainable agricultural practices is slow b	oecause farmers l	ack
the knowledge to implement them		

Statement	Options	Respondents	% of respondents
The adoption of	Strongly Agree (SA)	89	29.67
sustainable agricultural	Agree (A)	113	37.67
practices is slow because	Undecided (U)	23	7.67
farmers lack the	Disagree (D)	40	13.33
knowledge to implement	Strongly Disagree (SD)	35	11.66
them	Total	300	100

Figure 11. The adoption of sustainable agricultural practices is slow because farmers lack the knowledge to implement them

From the above table and figure, it was found that the respondents belongs to strongly agree: 29.67%, agree: 37.67%, undecided: 7.67%, disagree: 13.33% and strongly disagree: 11.66%.

 Table 12. Recommended pest control methods for sustainable agricultural systems have

 potential for more pests in the long term

Statement	Options	Respondents	% of respondents
Recommended pest	Strongly Agree (SA)	184	61.34
control methods for	Agree (A)	67	22.33
sustainable agricultural	Undecided (U)	4	1.33
systems have potential	Disagree (D)	38	12.67
for more pests in the	Strongly Disagree (SD)	7	2.33
long term	Total	300	100

Figure 12. Recommended pest control methods for sustainable agricultural systems have potential for more pests in the long term

From the above table and figure, it was found that the respondents belongs to strongly agree: 61.34%, agree: 22.33%, undecided: 1.33%, disagree: 12.67% and strongly disagree: 2.33%.

Table 13. Sustainable agricultural practices help protect the environment and our natu	ral
resources	

Statement	Options	Respondents	% of respondents
	Strongly Agree (SA)	126	42
Sustainable agricultural	Agree (A)	123	41
practices help protect the	Undecided (U)	21	7
environment and our	Disagree (D)	24	8
natural resources	Strongly Disagree (SD)	6	2
	Total	300	100

Figure 13. Sustainable agricultural practices help protect the environment and our natural resources

From the above table and figure, it was found that the respondents belongs to strongly agree: 42%, agree: 41%, undecided: 7%, disagree: 8% and strongly disagree: 2%.

Table 14. There may be insuf	ficient labour for the workloa	d required in sustainable
agricultural system		

Statement	Options	Respondents	% of respondents
	Strongly Agree (SA)	69	23
There may be	Agree (A)	71	23.67
insufficient labor for	Undecided (U)	20	6.67
the workload required	Disagree (D)	84	28
	Strongly Disagree	56	18.66
agricultural system	(SD)		
	Total	300	100

Figure 14. There may be insufficient labour for the workload required in sustainable agricultural system

From the above table and figure, it was found that the respondents belongs to strongly agree: 23%, agree: 23.67%, undecided: 6.67%, disagree: 28% and strongly disagree: 18.66%.

Table 15. Sustainable agricultural	systems should	produce an	adequate for	od supply to
feel the world population				

Statement	Options	Respondents	% of respondents
Sustainable agricultural	Strongly Agree (SA)	116	38.67
systems should produce	Agree (A)	104	34.67
an adequate food supply	Undecided (U)	18	6
to feel the world	Disagree (D)	37	12.33
population	Strongly Disagree (SD)	25	8.33
	Total	300	100

Figure 15. Sustainable agricultural systems should produce an adequate food supply to feel the world population

From the above table and figure, it was found that the respondents belongs to strongly agree: 38.67%, agree: 34.67%, undecided: 6%, disagree: 12.33% and strongly disagree: 8.33%.

CONCLUSION:

The size of the base farm, the resources available, the growing environment (rain or irrigation), the urban or rural setting, the types of crops and businesses operating under the government's specific macroeconomic policies, the dynamics of supply and demand, and societal customs all affect how effective a given package of sustainable agriculture is. Per socioeconomic requirements, a wide range of sustainability-related topics were thoroughly researched. According to the studies overall conclusions, increasing sustainability can be achieved by implementing methodical changes in crop and livestock production as well as resource management.

REFERENCES:

1. Sarah Velten, Julia Leventon, Nicolas Jager, Jens Newig (2015). What Is Sustainable Agriculture? A Systematic Review, Sustainability, 7, 7833-7865.

2. Babar Someshwar Narayan (2012). Sustainable Agricultural Development and Organic Farming in India, 1(11): 1-4.

3. Sharma R, Peshin R, Khar S, Ishar A.K (2014). Agriculture Innovation System Approach for Sustainable Agriculture Development: A Review, Agro Economist, 1 (1): 1-7.

4. Chandan Roy (2011). Economic backwardness of Uttar Dinajpur: a block level analysis, Munich Personal RePEc Archive, MPRA Paper No. 40376, 1-22.

5. Narayan BS (2012). Sustainable Agricultural Development and Organic Farming in India, Golden Research Thoughts, 1 (11): 1-7.

6. Prosenjit Kayal, Indrajit Roy Chowdhury (2018). Level of Human Development of RaiganjC.D Block, Uttar Dinajpur District, West Bengal: A Geographical Analysis, 5(4): 619-628.

7. Kapoor O. Virat et al. (2019). A study of factors affecting livelihood situations in the disadvantaged areas of West Bengal, India, African Journal of Agricultural Economics and Rural Development, 7(8): 1-10.